RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

FIRST YEAR [2015-18] B.A./B.Sc. FIRST SEMESTER (July – December) 2015 Mid-Semester Examination, September 2015

MATHEMATICS (General) Date : 17/09/2015 Paper : I Full Marks : 25 Time : 12 noon – 1 pm Group – A

Answer any three :

If $x + \frac{1}{x} = 2\cos\frac{\pi}{7}$, then prove that $x^7 + \frac{1}{x^7} = -2$.

- Find the principal value of $i^{\log(1+i)}$. 2.
- Solve $x^4 + 2x^3 5x^2 + 6x + 2 = 0$, given that one of the roots is $-2 \sqrt{3}$. 3.
- Solve $x^4 5x^3 9x^2 + 81x 108 = 0$, given that it has a multiple root. 4.
- If α, β, γ be the roots of $x^3 3x^2 + 4x 1 = 0$, find the value of $(\alpha + 1)(\beta + 1)(\gamma + 1)$. 5.

<u>Group – B</u>

Answer any two questions :

- a) For any three subsets A, B, C of the universal set U, if $A\Delta B = A\Delta C$, prove that B = C. [2] 6.
 - The mapping $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = x^2 3x + 2, x \in \mathbb{R}$. Investigate that f is one-to-one b) or not. [2]
- 7. a) Find the identity element and the inverse of any element a in the group (\mathbb{Z} ,*), where \mathbb{Z} is the set of integers and '*' is defined on \mathbb{Z} by a * b = a + b + 1, $a, b \in \mathbb{Z}$. [3]
 - b) Give an example to show that the union of two subgroups of a group may not be a subgroup of the group. [1]
- 8. a) In a ring $(\mathcal{R}, \oplus, \odot)$ prove that $a \odot (-b) = -(a \odot b) \forall a, b \in \mathcal{R}$. [3]

b) If
$$A = \{x \in \mathbb{R} : 0 \le x \le 3\}$$
 and $B = \{x \in \mathbb{R} : 1 < x \le 5\}$ find $(A \cap B)'$, where
 $U = \{x \in \mathbb{R} : 0 \le x \le 10\}$ is taken as the universal set. [1]

Answer any two questions :

Show that the function f(x) defined as follows : 9.

$$(\mathbf{x}) = \begin{cases} x \sin \frac{1}{x} & : & x \neq 0\\ 0 & : & x = 0 \end{cases}$$

is continuous at x = 0. Is it derivable at x = 0? Justify your answer.

f

- 10. a) Use the first principle of differentiation to find an approximate value of $\sqrt[5]{33}$. [3]
 - b) Is the function f(x) = [x] monotone decreasing?
- 11. If $y = e^{m \sin^{-1} x}$, show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 + m^2)y_n = 0$, where y_n denotes the n times differentiation of y. [4]

 $[2 \times 4]$

 $[3 \times 3]$

 $[2 \times 4]$

[4]

[1]